[53] Wood WHJ and Johnson MP (2020) Modelling the role of LHCII-LHCII, PSII-LHCII and PSI-LHCII interactions in state transitions. Biophys. J. In Press.

[52] Johnson MP (2020) Just the essentials: photoprotective energy dissipation pared-down. J. Exp. Bot. In Press.


[51] Malone L, Qian P, Mayneord GM, Hitchcock A, Farmer DA, Thompson RF, Swainsbury DK, Ranson NA, Hunter CN, Johnson MP (2019) Cryo-EM structure of the spinach cytochrome b6f complex at 3.6 Å resolution. Nature. 575, 535-539. In Press.

[50] Vasilev C, Mayneord GE, Brindley A, Johnson MP, Hunter CN (2019) Dissecting the cytochrome c2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem. J.  476, 2173–2190.

[49] Mayneord G, Vasilev C, Malone L, Swainsbury D, Hunter CN, Johnson MP (2019) Single-molecule study of redox control involved in establishing the spinach plastocyanin-cytochrome b6f electron transfer complex. Biochim. Biophys. Acta. 1860, 591-599.

[48] Johnson MP, Wientjes E (2019) The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim. Biophys. Acta.

[47] MacGregor-Chatwin C, Jackson PJ, Sener M, Chidgey JW, Hitchcock A, Qian P, Mayneord GE, Johnson MP, Luthey-Schulten Z, Dickman MJ, Scanlan D, Hunter CN (2019) Membrane organisation of photosystem I complexes in the most abundant phototroph on Earth. Nature Plants. 5, 879-889.

[46] Wood WHJ, Barnett S, Flannery S, Hunter CN, Johnson MP (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with photosystem I. Plant Physiol. 180, 2152-2166.

[45] Lishchik A; Vasilev C, Johnson MP, Hunter CN, Törmä P; Leggett G (2019) Turning the Challenge of Quantum Biology On its Head Biological Control of Quantum Optical Systems. Faraday Discussions. 216, 57-71.


[44] Adams PG, Vasilev C, Hunter CN, Johnson MP (2018) Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Biochim. Biophys. 1859, 1075-1085.

[43] Johnson MP (2018) Metabolic regulation of photosynthetic membrane structure tunes electron transfer function. Biochem J. .

[42] Huete-Ortega M, Okurowska K, Kapoore RV, Johnson MP, Gilmour DJ, Vaidyanathan S (2018) Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1). Biotechnology for Biofuels. BBIO-D-17-00596R1.

[41] Wood WHJ, MacGregor-Chatwin C, Barnett S, Mayneord G, Huang X, Hobbs J, Hunter CN, Johnson MP (2018) Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nature Plants. 4, 116–127.


[40] Snellenburg J, Johnson MP, Ruban AV, van Grondelle R, Stokkum I (2017) A four state parametric model of non-photochemical quenching in photosystem II. Biochim. Biophys. Acta. 1858, 854-864.


[39] Johnson MP (2016) Photosynthesis. Essays in Biochemistry. 60, 255–273.

[38] Stone JE, Sener M, Vandivort KL, Barragan A, Singharoy A, Teo I, Ribero JV, Isarelwitz B, Liu B, Chong Goh B, Phillips JC, MacGregor-Chatwin C, Johnson MP, Kourkoutis LF, Hunter CN, Schulten K. (2016) Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing.  Parallel Computing. 55, 17-27.


[37] Benson SL, Maheswaran P, Ware MA, Hunter CN, Horton P, Jansson S, Ruban AV and Johnson MP (2015) An Intact Light Harvesting Complex I Antenna System is required for complete State Transitions in Arabidopsis. Nature Plants. 1, E15176.

[36] Ruban AV and Johnson MP (2015) Towards visualisation of the dynamic structure of the plant photosynthetic membrane. Nature Plants. 1, E15161.

[35] Patole S, Vasilev C, El-Zubir O, Wang L, Johnson MP, Cadby AJ, Leggett GJ, Hunter CN (2015) Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates. Interface Focus. 5, 20150005.


[34] Vasilev C, Johnson MP, Gonzales E, Wang L, Ruban AV, Montano G, Cadby AJ, Hunter CN (2014) Reversible switching between non-quenched and quenched states in nanoscale linear arrays of plant light harvesting antenna (LHCII) complexes. Langmuir. 30, 8481–8490.

[33] Johnson MP, Vasilev C, Olsen JD, Hunter CN (2014) Nanodomains of Cytochrome b6f and Photosystem II Complexes in Spinach Grana Thylakoid Membranes. Plant Cell. 26, 3051-3061.

[32] Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, van Grondelle R (2014) Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection. Biochim. Biophys. Acta, 1837, 1027–1038.

[31] Johnson MP, Ruban AV (2014) Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes. Photosynth. Res., 119, 233-242.


[30] Krüger TPJ, Ilioaia C, Johnson MP, Belgio E, Horton P, Ruban AV, van Grondelle R (2013) The Specificity of Controlled Protein Disorder in the Photoprotection of Plants. Biophys. J. 105, 1018-1026.

[29] Ilioaia C, Johnson MP, Duffy CDP, Ruban AV (2013) Changes in the Energy Transfer Pathways within Photosystem II Antenna Induced by Xanthophyll Cycle Activity. J. Phys. Chem. B., 117, 5841-5847.


[28] Rutkauskas D, Chmeliov E, Johnson MP, Ruban A, Valkunas L (2012) Exciton annihilation as a probe of the light-harvesting antenna transition into the photoprotective mode. Chem. Physics, 404, 123-128.

[27] Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, Papagiannakis E, Horton P, van Grondelle R (2012) Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys J., 102, 2669-2676.

[26] Belgio E, Johnson MP, Juric S, Ruban AV (2012) Higher plant photosystem II light harvesting antenna, not the reaction center, determines both, the maximum excited state and non-photochemical quenching state lifetimes. Biophys J., 102, 2761-2771.

[25] Goral TK, Johnson MP, Duffy CDP, Brain APR, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J., 69, 289-301.

[24] Johnson MP, Zia A, Ruban AV (2012) Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta, 235, 193-204.

[23] Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the Photosystem II antenna. Biochim. Biophys. Acta. 1817, 167-181.


[22] Ilioaia C, Johnson MP, Liao PN, Pascal AA, van Grondelle R, Walla PJ, Ruban AV, Robert B (2011) Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J. Biol. Chem. 286, 27247-27254.

[21] Johnson MP, Brain APR, Ruban AV (2011) Changes in thylakoid membrane thickness associated with the reorganization of photosystem II light harvesting complexes during photoprotective energy dissipation. Plant Signaling and Behavior. 6, 1386-1390.

[20] Johnson MP, Ruban AV (2011) Restoration of rapidly-reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. J. Biol. Chem., 286, 19973-19981.

[19] Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation in higher plants involve the reorganisation of photosystem II light harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell, 23, 1468-1479.

[18] Ruban AV, Duffy CDP, Johnson MP (2011) Natural light harvesting: principles and environmental trends. Energy and Environmental Sciences, 4, 1643-1650.

[17] Zia A, Johnson MP, Ruban AV (2011) Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana. Planta, 233, 1253–1264.

[16] Stadnichuk IN, Bulychev AA, Lukashev EP, Sinetova MP, Khristin MS, Johnson MP, Ruban AV (2011) Far-red light-regulated efficient energy transfer from phycobilisomes to photosystem I in the red microalga Galdieria sulphuraria and photosystems related heterogeneity of phycobilisome population. Biochim. Biophys. Acta. 1807, 227-235.

[15] Ilioaia C, Johnson MP, Duffy CDP, Pascal A, van Grondelle R, Robert B, Ruban AV (2011) Origin of absorption changes associated with photoprotective energy dissipation in the absence of zeaxanthin. J. Biol. Chem. 284, 91-98.


[14] Duffy CDP, Johnson MP, Macernis M, Valkunas L, Barford W, Ruban AV (2010) A Theoretical Investigation of the Photo-Physical Consequences of Major Plant Light-Harvesting Complex Aggregation within the Photosynthetic Membrane. J. Phys. Chem. B, 114, 15244-15253.

[13] Ruban AV, Johnson MP (2010) Xanthophylls as modulators of membrane protein function. Arch. Biochem. Biophys. 504, 78-85.

[12] Goral TK, Johnson MP, Brain APR, Kirchhoff H, Ruban AV, Mullineaux CW (2010) Visualising the mobility and distribution of chlorophyll-proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant J. 64, 948-959.

[11] Johnson MP, Zia A, Horton P, Ruban AV (2010) Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII. Chem. Phys. 373, 23-32.

[10] Johnson MP, Ruban AV (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J., 61, 283-289.


[9] Damkjær JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P , Jansson S (2009) The Photosystem II light harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell, 21, 3245-3256.

[8] Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in LHCII. J. Biol. Chem., 284, 23592–23601.

[7] Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth. Res., 99, 173-183.

[6] Johnson MP, Pérez-Bueno ML, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of non-photochemical quenching involve common conformational changes within the Photosystem II antenna in Arabidopsis thaliana. Plant Physiol., 149, 1061-1075.


[5] Ilioaia C, Johnson MP, Horton P, Ruban AV (2008) Induction of efficient energy dissipation in the isolated light harvesting complex of photosystem II in the absence of protein aggregation. J. Biol. Chem., 283, 29505-29512.

[4] Pérez-Bueno ML, Johnson MP, Zia A, Ruban AV, Horton P (2008) The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the ΔpH-dependency of nonphotochemical quenching in Arabidopsis thaliana. FEBS Lett., 582, 1477-1482.

[3] Horton P, Johnson MP, Pérez-Bueno ML, Kiss A, Ruban AV (2008) Does the structure and macro-organization of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J., 275, 1069-1079.

[2] Johnson, M.P, Davison, P. Ruban, A.V. and Horton, P. (2008) The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett., 582, 262–266.


[1] Johnson MP, Havaux M, Triantaphylidès C, Ksas B, Pascal AA, Robert B, Davison PA, Ruban AV, Horton P (2007) Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photo-oxidative stress by a lipid protective, anti-oxidant mechanism. J. Biol. Chem., 282, 22605-22618.